

Have you ever wanted to do something
with SQL but weren’t sure how to do it? We
have all been in that situation. This column
will explore some problems we’ve either
been asked about or tried to solve
ourselves and will give you some ideas on
how to get started.

Generating test data
Let’s say you want to create a test table
and want to populate it with random data to
do some testing but need to make it large
enough so you can see how well your
query will perform. Here is an example SQL
statement that you can use to generate
different patterns. First of all lets assume
we have an SQL table that was created
with:

CREATE TABLE QGPL/TEST
(C1 INT NOT NULL WITH DEFAULT,
 C2 DEC (7, 2) NOT NULL WITH
DEFAULT,
C3 CHARACTER (10) NOT NULL WITH
DEFAULT,
C4 NUMERIC (5) NOT NULL WITH
DEFAULT)

Now let’s initialize the file with 1,000,000
rows using:

INZPFM FILE(QGPL/TEST) RECORDS
(*DFT) TOTRCDS(1000000)

This will put zeros in the numeric columns
and blanks in the character column. Now
let’s update all of the rows putting some
predictable data in some columns and
random data in others.

UPDATE QGPL/TEST a SET
C1 = rrn(a),
C2 = rand(47)* 10000,
C3 = substring
('alkowlkaajosuiyireoqxskfjyt',

integer(mod((rand(47)*
100+20), 20)),
integer(mod((rand(34)
*100+26),6))),

 C4 = rand()*1345

This statement uses the RRN (relative
record number) and RAND (random)
functions to generate data. The RRN
function, in this case, simply generates a
number from one to a million and updates
the first column. The RAND function
generates a number between 0 and 1 and
is then multiplied by another number to get
the appropriate range to fit into the numeric
type. The RAND function is also used to
generate various strings based on an input
string by taking a random substring (both
start position and length) and updating the
character field.

Varchar or not to Varchar
If you suspect you have character columns
that are wasting a lot of space, you may
want to consider making them variable
length character columns. Let’s say for
example you have a text description
column that is 100 characters long, but you
suspect that it either isn’t used or only a
small number of characters are ever used.
If that is the case, then you could save a lot
of disk space and memory if the field was
turned into a variable length character field
so that only the used portion of the column
was actually stored (plus a bit of overhead
for the size and information on how to
locate the extra data since it won’t be
stored with the fixed length columns). So
how do we figure that out?

Here is the answer…use the LENGTH built
in function to find out the make-up of the
column:

SELECT AVG(LENGTH(TRIM(MEMO)))
FROM PROD/CUSTMEMO

This statement takes the character column,
MEMO and first uses the TRIM function to
take off any trailing blanks. The next step is
to use the LENGTH built-in function to
determine the actual number of non-blank
characters in the column. The last step is to
average all of the lengths for all of the rows
in the table. This will tell you what the
average size of the usable data. If you want
to be more scientific and look at other
statistics like standard deviation you can
also use those functions to determine what
the variance is in the length of the data.

If it looks like there is a lot of wasted space
in the column, the next step is to determine
how to create the variable length column.
When a VARCHAR column is defined, it
can have an ALLOCATE attribute. For
example, here is a create table statement
that defines a variable length character
string.

CREATE TABLE QGPL/VC
(MEMO VARCHAR (100) ALLOCATE(20)
NOT NULL WITH DEFAULT)

This tells the database manager to create a
character field but if the data is of length 20
or less, then put the character string with
the rest of the fixed length data. When the
row is read by a query, this data will be in
memory and will provide fast performance.
If the data is longer than 20 characters, the
data will be stored in a separate area and
require two disk I/O’s to read.

The bottom line is that if you want the best
possible read performance and the column
information is always needed then use a
larger ALLOCATE value. If very little of the
column’s space is actually used or the
column is rarely needed then make the
ALLOCATE value small.

expertexpert@centerfieldtechnology.com@centerfieldtechnology.com

Inside This Issue:

A Beautiful View
Part 2 of 4 - Page Three

EASY Button…
 Page Five

DDS and SQL Join Files
 Page Six

Encoded Vector Indexes

Page Seven

mailto:expert@centerfieldtechnology.com
mailto:info@centerfieldtechnology.com

Thursday October 20, 2005Thursday October 20, 2005

2:00 - 3:00PM
Database Tuning — a Holistic Approach
Mark Holm
The iSeries has become more and more of a "database machine" in the last ten years. With the growing popularity of SQL,
ODBC and JDBC, journaling, and advanced database features like triggers, it has become necessary to understand how to
tune the database. This presentation provides a balanced view of database optimization in the context of complex application
architectures and complicated queries. You'll leave with many valuable suggestions you can take back to your shop and
apply immediately.

3:00 – 4:00PM
insure/INDEX & ANALYSIS Demonstration

4:00 – 5:00PM
To DBA or not to DBA
Mike Cain
While the AS/400 and iSeries servers have always had an integrated relational database management system, the need for a
DBA has traditionally been avoided, or very limited. In this presentation, we will explore the definition of a DBA, and whether
or not a DBA is now advantageous or even required, in an iSeries environment. The traditional tasks of a DBA will review
from the DB2 UDB for iSeries and SQL perspective, with insights on how to build DBA skills.

5:00 – 6:00PM
Expert Roundtable
Mark Holm, Mike Cain and Elvis Budimlic
This hour is an open forum where you can ask database experts challenging questions about your particular environment or
application issues.

Registration not required, howeverRegistration not required, however our space is limited. Please register by email: our space is limited. Please register by email:
chicago2005@centerfieldtechnology.com or online. If you have questions about tor online. If you have questions about the he
event, please visit: event, please visit: http://www.centerfieldtechnology.com/chicago2005.asp

Mark Holm
CTO and founder of

Centerfield Technology.
Works at IBM on the new

DB2 query optimizer.
Has held various

management
 & technical positions

in his 20-year
career in the computer

industry with IBM,
Showcase Corporation

(now SPSS)
and CTI.

Mike Cain
IBM Rochester’s Senior
Technical Staff Member
within the IBM Systems
and Technology Group
and team leader of
the DB2 UDB for
iSeries Center
of Competency.

http://www.centerfieldtechnology.com/webcast09152005_mikecain.asp
http://www.centerfieldtechnology.com/pdf/mark.pdf
http://www.centerfieldtechnology.com/chicago2005.asp
http://www.centerfieldtechnology.com/pdf/mark.pdf
http://www-03.ibm.com/servers/solutions/finder/solution/overview.jsp?solution_id=soq21303420112105002%7C30&portal_id=srq91700501113105002%7C30
http://www.centerfieldtechnology.com/webcast09152005_mikecain.asp
http://www.centerfieldtechnology.com/pdf/elvis.pdf
http://www.centerfieldtechnology.com/pdf/mark.pdf
http://www.centerfieldtechnology.com/webcast09152005_mikecain.asp
mailto:chicago2005@centerfieldtechnology.com
http://www.centerfieldtechnology.com/chicago2005.asp

I
n
r

V

G
s
th
b
o
a
jo
r
a
r

A
q
o
n
le

U
T
fo

T
v
d
d
th
q

T
a
p
k
in

P

 Part 2 in a Series of 4

n our last newsletter we talked about the use of
SQL views to simplify a complex database by
hiding unnecessary columns from end users and
by giving the remaining columns understandable

ames. This issue will discuss the use of views to hide file
elationships and to turn data into readable values.

iew into a Relationship

ood database design means that facts (data elements) are
tored only once. For example, a database may have one table
at stores addresses. These addresses may be for customers,

usinesses, or employees. The data associated with customers
r employees would be stored in other tables. Therefore, to get
 name and address for a customer, two or more tables must be
ined together. In complex production databases these file

elationships may involve five to ten tables to extract information
bout a single event like a product sale. Often times, the file
elationships are not documented well or at all.

s a result, it is often difficult to assemble information with SQL
ueries – even for technical personnel who work with the files
ften. End-users who attempt to write their own reports typically
eed a lot of support to understand these relationships. This
ads to a drain on already overburdened IT staff.

sing SQL views, the file joins can be done once and reused.
his is a much better approach than joining the files in queries
r three reasons.

he first is that the file relationships are documented within the
iew. Since the relationships between tables may not be written
own, the view at least provides one way to document the
atabase. Furthermore, the view name can provide a clue as to
e resultant data to help users find the information more

uickly.

he second is that no one needs to remember how the tables
re joined once the view is in place. Essentially, the view
rovides a level of abstraction so the end-user does not need to
now the details of the relationships and can focus on their goal
stead of unnecessary details.

The third reason is that the view
can insulate queries and reports
from table changes. If, for
example, it is decided that a file
needs to be split into two
separate files the view can

the new file without forcing reports to change.

Cryptic to usable

When programmers build applications, they often try to minimize
the amount of space taken by the file. One of the most common
techniques to do this is to encode data. For example, rather
than have a long character field to describe a status, a number
is used instead. If the application has a common routine to
convert the number into the text description for application
reports, this may not pose any problem. If users query the
database directly using an SQL-based tool however, this
conversion is not available. As a result, end-users must come
up with another way to convert the coded value into a readable
form.

The good news, is that SQL views can come to the rescue!
Depending on how many unique values there are, two
techniques can be used to solve this problem.

The most simple approach is to use built-in SQL support to
convert the encoded value into a text string within the statement
itself. Lets say, for example, the database has a state column
that contains a number between one and fifty. In most reports,
the state needs to be in text form. To accomplish this the view
would be created in the following way:

CREATE VIEW state (column1, column2, stateName,
column4) AS
SELECT
 SomeColumn1,
 SomeColumn2,
 CASE statenumber
 WHEN 1 THEN ‘Alabama’
 WHEN 2 THEN ‘Alaska’
 WHEN 3 THEN ‘Arizona’
 o
 o
 o
 WHEN 48 THEN ‘West Virginia’
 WHEN 49 THEN ‘Wisconsin’
 WHEN 50 THEN ‘Wyoming’
 END stateName,
 SomeColumn4
FROM
 CustomerInfo

When data was selected from the ‘state’ view, the text names
would be returned instead of the numeric values.

Part 2 in a Series of 4

A Beautiful View
potentially be changed to include
(Continued on page 4)

expertexpert@@centerfieldtechnology.comcenterfieldtechnology.com

age Three

mailto:expert@centerfieldtechnology.com
mailto:info@centerfieldtechnology.com
http://www.centerfieldtechnology.com/publications/

H
a
p

C

U
h
f
o
A
w
t
h

T
a
t
A
r
r
t
b

T
w
s
in
h
n
e
t
e

F
a
s
T

e

n
(A Beautiful View
Continued from page 3)

What if data is in the table that does not
match the criteria specified in the CASE
clause? The answer is that a null value
would be returned. If that happened you
might see returned values that looked
like:

STATENAME
Alabama
Arizona
__—-_____ Null value; actual value in
physical file was 0.
Wyoming

If too many values exist in the table to be
conveniently coded in the SELECT part
of the view definition, then it is necessary
to use a join to accomplish the same
goal. In this case, the coded value and
the text value are stored together in a
separate physical table and joined into
the production file. The view might look
something like this:

CREATE VIEW state (column1,
column2, stateName, column4) AS
SELECT
 A.SomeColumn1,
 A.SomeColumn2,
 B.StateName
 A.SomeColumn4
FROM
 CustomerInfo A,
 StateCodes B
WHERE
 A.StateCode = B.StateCode

In this case, the state code from the
production file is joined to the same
column in another table that contains the
descriptive data and the text column is
returned from the second table.

The major advantage of this approach is
that as the data values grow or change,
the secondary table simply needs to be
updated and the view does not have to
be modified. The disadvantage is the
performance penalty that gets introduced
when tables are joined together.

In our next issue we’ll talk about using
views to further provide report formatting
and to help provide an additional layer of
security to production data.
expertexpert@centerfieldtechnology.@centerfieldtechnology.
ow do you know that your application is
nd will continue to perform as well as it
ossibly can?

ase Study, Anylarge, Inc.

pon initial deployment, Anylarge’s new
omegrown XYZ application was doing
ine. Users loved it, IT was a hero for
nce, ROI was on the high positive side.
nylarge IT brought up a few more sites
ith similar positive results…response

ime was a little slow, but a planned
ardware upgrade took care of that.

hen, about a year after the initial go-live,
fter numerous enhancements and more
han 1000 end users in production,
nylarge IT started getting reports of slow

esponse time, especially in query and
eporting functions. A sudden downturn in
he business climate made an out-of-
udget hardware upgrade impossible.

he original application had been written
ith the help of several consultants and
ome of the logic behind the SQL and
dexing strategy was either forgotten or
ad become indecipherable to Anylarge’s
ow-smaller IT staff. A few unscheduled
xecutive meetings took place, with
he sting of “Take care of this or else…”
-mail following the meetings.

ortunately, one of Anylarge’s iSeries
dministrators had learned of a unique
ervice available from Centerfield
echnology. Called a database/

ASSESSMENT, the service allowed
Anylarge IT, with Centerfield’s assistance,
to design a collection strategy that turned
on iSeries dbMON during periods of the
worst slowdowns. The resulting dataset
was then sent to Centerfield for analysis.
Two weeks later, an 85 page document
was sent to Anylarge, and a 2 hour
conference call with Centerfield predicted
that building several indexes and making
several modifications to SQL statements
would substantially improve performance
without adding hardware resources.

With nearly immediate performance
improvements in hand, Anylarge IT was
also able to justify purchase of the
Centerfield Technology tools and training
which proved valuable to both
development and operations staff as they
incorporated intelligent database tuning
and diagnostics into their process.

While the names and characters in this
story are fictional, the scenario is very
common in the large group of iSeries
shops that end each day on a happier not
because they use Centerfield Technology
iSeries performance tuning and diagnostic
tools.

iSeries database/ASSESSMENT
IBM ServerProven®

Learn More:
http://www.developer.ibm.com/gsdod/
solutiondetails.do?solutionId=16389&lc=e
comcom

Page Three

Page Four

http://www.centerfieldtechnology.com/tools/analysisoffer.asp
http://www-03.ibm.com/servers/solutions/finder/solution/overview.jsp?solution_id=soq83452911181105002|30&portal_id=srq91700501113105002|30
http://www.centerfieldtechnology.com/chicago2005.asp
mailto:expert@centerfieldtechnology.com
mailto:info@centerfieldtechnology.com

E
n
p
o
b
a

T
s
P
iS
p
fo

P

very once in a while I find myself in
eed of calling an iSeries command or
rogram from SQL. For many years,
bvious solution has been to use OS
uilt-in command interpreter QCMDEXC
nd call it as a stored procedure.

o be clear, QCMDEXC is not really a
tored procedure (i.e. no CREATE
ROCEDURE has been done for it) but
eries allows for dynamic CALL to

rograms on the iSeries with the
llowing caveats:

♦ All arguments are treated as IN type

parameters.
♦ The CALL type is GENERAL (no

indicator argument is passed).
♦ The program to call is determined

based on the procedure name
specified on the CALL and the
naming convention.

♦ The language of the program to call
is determined based on information
retrieved from the system about the
program.

But I digress, so let me get back to
QCMDEXC.

I love the power it offers, but I absolutely
abhor the fact that I have to count up the
number of characters in the command to
pass them as DECIMAL(15,5) as
expected for the 2nd parameter.
Pain is somewhat alleviated by ability of
languages like Java to return string
length and cast it to appropriately
formatted Decimal object.

However, I kept thinking, why can’t I just
pass the command string and let system
figure out the length. That’s exactly what
I’ve done by creating EXCCMD stored

procedure.

First run this on your system to create
your own command executor procedure.
This is a one time configuration step.

CREATE PROCEDURE QGPL.
EXCCMD
(IN command VARCHAR(500))
LANGUAGE SQL
BEGIN
DECLARE commandLength DECIMAL
(15,5);
SET commandLength = DECIMAL
(LENGTH(command),15,5);
CALL QSYS.QCMDEXC(command,
commandLength);
END

Then in your SQL scripts and even in
interactive SQL (i.e. STRSQL or
RunSqlScripts) you can use it as:

CALL EXCCMD('RMVM FILE(QGPL/
TABLE1) MBR(JANUARY)')

Elvis Budimlic
Development Director

EASY Button
for Executing

iSeries Commands
From SQL
Centerfield Technology Offers CASH for the
Best new iSeries tool iDEA.

Many of you know that Centerfield Technology specializes in

one-of-a-kind tools for iSeries shops that need to be pro-active about
performance problem diagnostics and resolution. Many of our most valuable tools

were developed as a result of customer and prospect input.

We're prepared to develop & market the next generation of iSeries performance tools and are willing to
lay cash on the line for the best ideas from the best iSeries shops out there.
Registration is simple. Simply go to www.centerfieldtechnology.com and complete the form.

All registrations will be acknowledged upon receipt, and the best idea
for a new iSeries performance diagnostic or performance tuning tool

will be rewarded with a $500 cash prize on December 15, 2005.

One runner-up receives $250. The award winner decision is solely up to Centerfield Technology
 and all entries will become property of Centerfield Technology, Inc. For complete rules, please
send your request to: info@centerfieldtechnology.com

Ka-Ching For Your Product Ideas
expertexpert@@centerfieldtechnology.comcenterfieldtechnology.com

age Five

http://www.centerfieldtechnology.com/pdf/elvis.pdf
mailto:info@centerfieldtechnology.com
mailto:expert@centerfieldtechnology.com
http://www.centerfieldtechnology.com/promotions.asp
mailto:info@centerfieldtechnology.com

C
O
w
r

M
v
a
a
w
D

I
L
p

L
j

T
p
s

I
I
n
p
f

T
e

L
T
s
f
t

e

s

c

ee
ouple of weeks ago we received a question about simulating
uter, Inner, Left & Right joins using DDS on our Ask-the-Expert
ebsite. The answer to that deserves to be shared with our

eaders.

y personal preference in creating non-keyed LFs is to use SQL
iews, as they allow me to use any of the SQL join keywords
vailable on the DB2 UDB for iSeries and read it via SQL or RPG
s non-keyed logical file (i.e. arrival sequence). However, if you
ant keyed LF or your business rules dictate using DDS, then
DS it will be!

n this article I am going to illustrate SQL join keywords (INNER,
EFT OUTER, RIGHT OUTER) and equate them to their powerful
redecessor DDS.

et me first list 2 physical file sample DDS sources that will be
oined by subsequent DDS and SQL files:

hese are very straightforward and minimal samples of two
hysical files that user may want to join to see both name and
alary for a specific employee.

NNER JOIN
nner or equi-join is a default join type for join logical files that do
ot specify the JDFTVAL keyword. It gives all the records from the
rimary file PF1 along with matching records from the secondary
ile PF2.

his join is illustrated in the JLF1 dds source sample. Its SQL
quivalent would be:

EFT OUTER JOIN
his join will return all matched records from primary and
econdary files as well as non-matched records from the primary
ile. For non-matched records in the primary file, default values of
he secondary file’s field are returned.

This join requires use of JDFTVAL keyword in the DDS for join
logical file.

This join is illustrated in the JLF2 dds source sample. Its SQL
equivalent would be:

RIGHT OUTER JOIN
This type of join is the same as a left outer join with the tables
specified in the opposite order. In fact, that is exactly how it's
implemented on the iSeries. To get this type of join in a LF, you
simply need to reverse the order files are joined in. This join is
illustrated in the JLF3 dds source sample. Its SQL equivalent
would be:

There are other type of joins in SQL that are not as readily
available in the DDS, like EXCEPTION JOIN and like. To do som
of these joins in DDS we would have to resort to select/omit
criteria (keyword S or O).

Most of these views will perform just as well as join LFs as long a
indexes on the join fields exist either as primary keys on the
physical files themselves or SQL indexes are built for that specifi
purpose.

IBM's development direction is SQL, and even though DDS is
very powerful and offers some unique capabilities, I recommend
using SQL when circumstances allow it.

DDS and SQL
Join Files

DDS and SQLDDS and SQL
Join FilesJoin Files

PF1 dds source
 A R REC1
 A NBR 10
 A NAME 20
 A K NBR

PF2 dds source
 A R REC2
 A NBR 10
 A SALARY 7
2
 A K NBR

CREATE VIEW JLF1 AS
SELECT A.NBR, A.NAME, B.SALARY FROM PF1 A
INNER JOIN PF2 B ON A.NBR = B.NBR

JLF1 dds source
 A R JOINREC JFILE(PF1 PF2)
 A J JOIN(PF1 PF2)
 A JFLD(NBR NBR)
 A NBR JREF(PF1)
 A NAME
 A SALARY

CREATE VIEW JLF3 AS
SELECT B.NBR, IFNULL(A.NAME,' ') AS NAME, B.
SALARY FROM PF1 A RIGHT OUTER JOIN PF2 B ON
A.NBR = B.NBR

JLF3 dds source
 A JDFTVAL
 A R JOINREC JFILE(PF2 PF1)
 A J JOIN(PF2 PF1)
 A JFLD(NBR NBR)
 A NBR JREF(PF2)
 A NAME
 A SALARY

CREATE VIEW JLF2 AS
SELECT A.NBR, A.NAME, IFNULL(B.SALARY,0.00)
AS SALARY FROM PF1 A LEFT OUTER JOIN PF2 B
ON A.NBR = B.NBR

JLF2 dds source
 A JDFTVAL
 A R JOINREC JFILE(PF1 PF2)
 A J JOIN(PF1 PF2)
 A JFLD(NBR NBR)
 A NBR JREF(PF1)
 A NAME
 A SALARY
xpertxpert@centerfieldtechnology.com@centerfieldtechnology.com Page Six

mailto:expert@centerfieldtechnology.com
mailto:info@centerfieldtechnology.com

W
I
o
t
t
C
t
v
u
a
q
p

T
o
l
g
s
u
i
t

A
c
o
a
s
i
p
m
s
t
s
a
t
g
p
n
t
r
r

B
i
l
w
a
m
a
i

Pa

Encoded Vector Indexes To use or not to use -- that is the question!

hen IBM introduced the Encoded Vector
ndex (EVI) in 1998, it was introducing one
f the most revolutionary database
echnologies seen in DB2 for quite some
ime. Here we are, over six years later and
enterfield still gets many questions about

hese mysterious indexes. In general, a
ast majority of the iSeries shops do not
se them and some of those companies
re missing an opportunity to give their
uery and reporting work a good
erformance boost.

his article won’t cover the inner workings
f an EVI. Instead, we’ll give you a high

evel overview and give you some
uidelines to help you decide if they make
ense in your database. If you want to
nderstand the data structures that an EVI

s built on there are some web resources at
he end of the article.

s a general rule, traditional indexes
reated as a result of a CRTLF command
r using the CREATE INDEX SQL syntax
re very efficient at finding and retrieving
mall amounts of data. On the other hand,
f a query needs to process a large
ercentage of a file or table then it is much
ore efficient to read the records in arrival

equence. This is because using an index
o fetch data will almost always result in
mall, random disk I/Os on the rows
ssociated with the index keys. Because
he rows associated with the keys are
enerally not sorted the way the keys are
laced in the index, the row will normally
ot be in memory unless the data happens
o be added that way or someone has
eorganized the file using that logical file to
eorder the data.

ecause of these factors, traditional
ndexes work well when fetching 20% or
ess of the rows in a table. Table scans
ork well when more than 70% of the rows
re processed. What is the most efficient
ethod between these two extremes? The

nswer is that table scans will generally win
f the query optimizer thinks that more than

20% of the data will be
processed. Table scans
over very large tables,

time consuming and also use a lot of
resources filtering through rows that aren’t
selected or are already deleted.

Enter the Encoded Vector Index. EVIs are
specifically designed to fill the gap between
traditional indexes and table scans. So why
would this ‘index’ be any better than a
traditional one?

The answer lies in how the EVI is used to
find and process the rows associated with
its keys. The unique data structure inside of
an EVI allows DB2 to use the best aspects
of indexes and the best aspects of table
scans.

Traditional indexes work well because it is
extremely fast to locate any given key even
in a very large table. The secret behind this
performance is that the structure allows the
value to be found using a binary search. A
binary search, for those of you that aren’t
familiar with the algorithm, cuts the search
list in half every time it looks at the full list.
If there are a million rows in a table, it will
take less than 20 comparisons on average
to find the value.

A table scan is efficient because it does not
do small random disk I/Os and instead
does fewer and larger requests to disk.

EVIs leverage the speed of the binary
search and the advantages of a table scan.
When DB2 uses an EVI, it first finds the
first and last rows in the table [where?] it
will find selected rows. Next it does
intelligent disk I/O to both leverage large
I/Os and also to skip doing any I/O where
there are not going to be selected rows.

Guidelines

So when does it make sense to start
experimenting with EVIs? As with all
performance recommendations, the answer
is “it depends.” There are, however,
guidelines that you can use to at least know
where you shouldn’t use them and also
situations where they are most likely to be
of benefit.

Where NOT to use EVIs:
♦ On tables with relatively low query

activity
♦ On fairly small tables
♦ On columns that are highly unique. An

example might be a date/time column
that will always have a new value being
inserted

♦ On columns that are highly volatile.
This is a ‘softer’ guideline but if the
column has a large number of distinct
values then this rule should be
observed

Where EVI’s are most likely to provide
benefit:
♦ On tables that are large and used as

the source of reports or ad hoc queries.
Of particular interest are tables that
have queries that need to process
between 20 and 60% of the data.
These tables can be identified by
Centerfield’s insure/ANALYSIS product

♦ On columns with a reasonable number
of distinct values (typically less than
approximately 64,000)

♦ On columns that have data skew –
especially where the data skew is
physically clustered

♦ On columns that are commonly ANDed
or ORed together and the combination
either results in 20-60% of the rows
being selected or if there is correlation
between the columns such that two or
more indexes can narrow the selected
rows down to a small number.

Further Reading

If you’d like to know more about encoded
vector indexes, see the following web
pages:

http://www-03.ibm.com/servers/enable/site/
bi/teraplex/evi.html

http://www.intelligententerprise.com/
db_area/archives/1999/992601/scalable.
jhtml;
jsessionid=PZKUK0OCKDMEUQSNDBEC
KHSCJUMEKJVN
however, can be very

expertexpert@@centerfieldtechnology.comcenterfieldtechnology.com
ge Seven

http://www-03.ibm.com/servers/enable/site/bi/teraplex/evi.html
http://www.intelligententerprise.com/db_area/archives/1999/992601/scalable.jhtml;jsessionid=PZKUK0OCKDMEUQSNDBECKHSCJUMEKJVN
mailto:expert@centerfieldtechnology.com
mailto:info@centerfieldtechnology.com

